No Quantum Ergodicity for Star Graphs

نویسندگان

  • G. Berkolaiko
  • B. Winn
چکیده

We investigate statistical properties of the eigenfunctions of the Schrödinger operator on families of star graphs with incommensurate bond lengths. We show that these eigenfunctions are not quantum ergodic in the limit as the number of bonds tends to infinity by finding an observable for which the quantum matrix elements do not converge to the classical average. We further show that for a given fixed graph there are subsequences of eigenfunctions which localise on pairs of bonds. We describe how to construct such subsequences explicitly. These structures are analogous to scars on short unstable periodic orbits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum ergodicity for graphs related to interval maps

We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakónski et al (J. Phys. A, 34, 9303-9317 (2001)). As observables we take the L functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesguemea...

متن کامل

Continuous-time quantum walks on star graphs

In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N -fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K2 graphs (Complete graph with two vertices) and the probability of observing wal...

متن کامل

The spectrum of the hyper-star graphs and their line graphs

Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...

متن کامل

Continuity of the Integrated Density of States on Random Length Metric Graphs

We establish several properties of the integrated density of states for random quantum graphs: Under appropriate ergodicity and amenability assumptions, the integrated density of states can be defined using an exhaustion procedure by compact subgraphs. A trace per unit volume formula holds, similarly as in the Euclidean case. Our setting includes periodic graphs. For a model where the edge leng...

متن کامل

On Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges‎

‎A tree containing exactly two non-pendant vertices is called a double-star‎. ‎Let $k_1$ and $k_2$ be two positive integers‎. ‎The double-star with degree sequence $(k_1+1‎, ‎k_2+1‎, ‎1‎, ‎ldots‎, ‎1)$ is denoted by $S_{k_1‎, ‎k_2}$‎. ‎It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching‎. ‎In this paper‎, ‎we study the $S_{1,2}$-decomposit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004